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Abstract. Deterministic evolution that correspandsto the adiabatic Liouvillean forrecombi- 
nation A+B+O derived in the preceding paper I ,  is found. It is expressed by a set of 
linear kinetics equations for occupation numbers, ncz( l ) ,  o=a, b and describes flaws of 
particles inside domains to time-independent interfaces between A and B phases, where 
the particles annihilate. The interface locations are defined by a static 'potential'. Averaging 
of nrt(l) has been carried out both over random distribution of locations ofinterfaces and 
a Gaussian distribution of initial density profile. For an arbitrary fraction of initial species 
and comparable diffusion coefficients, the expectation value of density decays as 
while standard variance, ((8ccJ2)'/*, decreases more slowly at 1-m, i.e. as 1 - d / 4  for the 
d-dimensional case, pointing to the importance of initial fluctuations for the deterministic 
kinetics. 

1. Introduction 

In a recent paper 111 referred to here as I, we have constructed an effective Liouvillean 
Len for many-body systems with instantaneous local recombination A +  B t 0. This 
research was motivated by interest in the effect of the slowing of diffusion-limited 
recombination (DLR). This phenomenon, which was first proposed theoretically [2], 
was later observed in computer simulations [3] and is being extensively discussed 
[4-91. The purpose of our work is to investigate an extreme case with large rate of 
local recombination U 

U >> D = max( D-) explicitly U -P (1) 

where D, are diffusion jump rates, with D = a, b referring to species. Stratification of 
species occurs in this case from the very beginning of the reaction. A many-body 
effective Liouvillean for this system obeying (1) has been derived in I. To obtain 
average density and its variance, however, further simplification is necessary, requiring 
application of deterministic approximation to the analysis of evolution described by 
Len. This can be justified by recalling the main argument of fluctuation theory [23, i.e. 
relaxation of initially created fluctuations can be studied assuming all temporary 
molecular fluctuations are suppressed, since they decay quickly and have amplitude 
small compared to deterministic ones. This assumption is valid due to the stability of 
reaction A+B+O. As a result, only initial fluctuations are important. Formally, the 
deterministic approximation means that the evolution obeys a deterministic equation 
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without stochastic terms in rates, given an initial average density and a variance in the 
density fluctuations. 

We outline in section 2.1 two possible ways to use Len for our purposes. In section 
2.2 we introduce a kinetics equation for a probability distribution function (PDF) that 
follows from Len. In section 2.3 deterministic kinetics equations for occupation numbers 
n,, (density number) are derived. Deterministic transition is correct if each cell on the 
lattice contains many particles of an arbitrary sort 
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(nmi)>>l .  (2) 
In the opposite case, when (nr j )=  1, local temporary fluctuations, ((8n,j)2)''2, are 
comparable with (nmi) .  For n >> 1 to be realized, on the one hand, the dimension of a 
cell, I (chosen in this paper as unity) must be large enough, and on the other hand, 
it must be small in order to provide a uniform distribution of the particles within the 
ceiis. On iarge time-scaie, a non-equiiibrium system is supposed to behave as aiihsion- 
like, and in the continuum limit a variance in the I affects only a renormalization of 
transport coefficients, but no change in the temporary behaviour of the system [lo]. 
As stressed in I, the existence of two large parameters (relations (1) and (2)) are vital 
for our analysis. Solution of the kinetics equations is shown to correspond to domain 
structure of the mixture. Characteristic configurations are described. We argue that 
iopoiogicai conservaiion iaw hoids for deierminisiic approximaiion. Correspondence 
of the results to known lattice models of diffusive transport is established. Analogy 
with unimolecular decay is discussed. Quasilinearity of the operator Len introduced 
in I is proved in this section. In section 3 an approximate solution of the kinetics 
equations is presented. As a result, desirable time dependence of the average density 
and of the particle number variance is calculated by averaging over different initial 
vunugurar,u,,s. 1 I1C CUlLC,"b,U,,b a,c SULIIIIIaLI'mJ 111 bSCLIULI *. 
as in I. 

---c :-_- - ̂̂^ _ ^  7..-:-_-.. :--A: _ _  ̂ ... :.... 1 ..I ÂL̂""..." --.- A:̂..̂ w c  us= LUG >a1115 LIuLa-LIuzID 

2. Deterministic kinetics of the DLR 

2.1. Introduction 

Since kinetic processes in classical statistical mechanics may be formulated with the 
help of two different languages, i.e. in terms of fields { a j ,  b j }  [ll] and in terms of 
physical configurations of particles {nrj} [IO, 121, the dilemma arises which method is 
more appropriate for the calculation of fluctuations and average density. Quite a 
number of techniques, including perturbation theory in powers of (n,J in the weak 
coupiing iimit j i i ,  ijj,  the anaiogy wiih the Bose condensaiion ji4j. path iniegral 
formulation [15], and decoupling schemes with self-consistent closure [5, 61, are worked 
out in 'field' chemical kinetics. The effect of stratification, however, has not been 
explained in terms of these approaches. 

For the calculation of observable values, some sort of contracted description of 
many-body state IF) is needed. Usually, it is provided by projection, 9, on pair state 
PIF) ji6j, i.e. 

J,~IF)= %'L.AF) (3) 

where P= a;biklO)(O1akb_t is the projector operator in the Fourier basis. Operator 9 
now performs a second reduction of the many-body system alongside the projector R. 
Approximate equation for 91F)  can be obtained from (3) by selecting all diagrams 
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that are linear in powers of (nmJ and including all powers o f  0,. The recombination 
of particle clouds is believed to be taken into account in this way. However, resulting 
perturbation theory for the effective diffusion coefficient gives no slowing of the reaction, 
though small (n,J is just the case where asymptotic stochastic kinetics are applied. 
The effect of clusterization, being more difficult for calculation, is likely to be involved 
in higher orders of the perturbation theory. We shall not discuss this further. 

Instead, we shall return to the description in terms of occupation numbers, n,<, 
our aim being to establish typical configurations, {n , } ,  that are determined by initial 
conditions and Len. The method enables us to describe separation of heterogeneous 
medium . 

It is reasonable to start by asking why did we begin with the field formulation in 
the Fock space of states, and now are returning to the system of equations for many-body 
PDF F({nvt ) ;  1 ) .  We can say, briefly, that the DLR kinetics is quasilinear (it is proved 
in section 2.3) and is governed by the Liouvillean Le, stated in I. The Fock space 
formalism has allowed us to analyse transitions of individual particles, and to prove 
that a bimolecular elementary rate constant for these transitions is replaced with a 
unimolecular one in the limit U + m. This point will be discussed in detail in section 
2.3: Previously that property was not evident in the 'first quantization formalism' with 
finite rate U. 

2.2. Balance equation in adiabalic conditions 

It is not known which component is in an arbitrary cell, so a pair of occupation 
numbers {ma;, mbj )  attributed to it to describe its state. The evolution of the total state 
vector 

is now calculated in the effective space of states for the scenario determined with the 
Liouvillean Len. It was previously obtained that Lerr causes four types of transitions, 
each having its own rate. In particular, the expression for the rate of the transitions 
(I.36p) can be calculated by acting with the second term of the operator (1.35) on 
vector (4) 
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where leaders indicate remaining configurations that do not participate in the transition 
(1.368). The contribution of ( 1 . 3 6 ~ )  transitions to the rate of F((noJ,  I )  is calculated 
analogously 

(J,)7F((nv8}; t )  

M G Rudauels and A G Rudauefs 

=Db 1 { ( n b , + l ) F ( .  . . , nb,+.-  1 , .  . . , nb,+ 1 , .  . . ; I )  
1.c 

-, 
-nbcr(. . . , n.,,+*, . . . , nb,, . . .; i )$ (na ,+e ) .  [ i b )  

The rate of change of the state (nJ  due to transitions ( I .36a)  and (1.366) are obtained 
from equations (7) by permutating indices a and b. The combined effect of all types 
of transitions is contained in a total balance equation for F 

JtF= ((Jt)* +(at), +(Jt ) ,+ (Jt ) , )F .  (8) 

Equation (8) corresponds to slow kinetics of a many-body state in local equilibrium. 

2.3. Deterministic regime 

To write out kinetics equations for local density, the Kramers-Moyal expansion in(8) 
should be carried out to present it in the form of a continuity equation for F in the 
configuration space {n,J under the drift approximation 

J,F({n,,}, t )  = -1 ( J / J n ~ ; ) ( w o ~ ( ( n ~ j } ) ~ ( { n ~ j } ;  1 ) ) .  (9) 
i." 

Required kinetics equations can be found [ l o ,  121 as characteristics of (9) 

J,nVi = wet. (10) 

The expansion in (8) must be taken with care to fulfil the balance conditions in the 
kinetics equation (10) .  To this end, the functions 0(nmj )  should be considered as a 
limit of sequence of smoother functions of corresponding arguments. 

By (7), not more than a single molecule is involved in the elementary event in each 
cell of the lattice. Now we are interested in the stage when occupation numbers are 
large and we may treat them as continuous variables that are varying by a small amount 
E in elementary acts. Then [ l o ,  121, equations ( 7 )  are equivalent to equations containing 
shift operators E,=exp(s J/Jn,) with E =  1: 

(Jr)pF(In,i}; 1 )  = Db 1 {Eb&+,- l}nb,e(n,;+,)F({n,i); t )  ( 1 1 0 )  
i s  

(J,),F({n,i}; I ) =  Db ( E b ~ ~ ~ ~ + ~ - l l n b ~ 6 ( n ~ j + = ) F ( ( n , ~ l ;  1). ( 1 l b )  
Le 

Missing equations for the processes (1.366) and (1.368) are obtained from equations 
( 1  1 )  by relabelling the indices a @  b. Truncating the Kramers-Moyal expansion in 
equations ( 1 1 )  at linear terms in powers of E and putting E = 1 at the end of the 
calculations, one gets the kinetic equation in the drift approximation 

J,F({n,;}; 1 )  

(L D.{J.i+Jb;+,}n.;e(nbi+.)+ Db{Jbi+J. ,+=}nbie(n , ,+ , )  

+Db{Jbi-Jbif,}flbje(fl.i+,)+D.(J.j-J.j+.]fl.i8(flbi+, F({%I; 1 )  (12) 
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with J, a/an,,. Finally, transforming the derivatives a/Jn,, in all terms in (12) so 
that they contain only one index of summation, we obtain characteristic equations. 
Equations of the deterministic kinetics for recombinative processes ( 1 . 3 6 ~ )  and (1.368) 
are derived from the first and second terms in (12) 

(13) 

and from the third term follows the kinetic equation due to the diffusive process (1.367) 

(14) 

( a t ) , x + p " b i = - D  bnbi 1 e a i + e - D a &  1 %+e 

( a , ) , n b i = - D  bnbi  1 Sei+.+ D b 8 . i  1 nbi+e.  

Here the abbreviations are introduced 

e., = ma,) SOj = S ( n a j ) .  
The total balance for B particles encompasses transitions (I.36a), (I.36@), ( 1 . 3 6 ~ )  

= ( a i ) m + p n b i +  (J , )?nb; .  (15)  

It is useful to study the meaning of each transition in (15). According to the scheme 
(I.36y), equation (14) represents Lorentz's model of correlated Brownian motion of 
B particles in gas of A scatterers, with no annihilation of particles. It can be seen from 
j i4 j  that the oniy aiiowed transitions for B particies are to ceiis containing no A 
particles with n4 = 0, 8, = 1. Transitions to cells containing A particles with nmj 2 1 
and 8, = 0 are forbidden. Collisions of A and B particles are permitted in the channels 
(1.36a) and (I.36p) which are opened when the adjacent cells are occupied by A 
particles to make possible the recombination process, i.e. equation (13). 

Now we want to show that the kinetics described by equations (13) and (14) 
(i""'"1LLces ,,,a, IIIIcllaccs a,= LIIULLUIIICSS. fitxvrurnl; ,U L'lC LCSUILS U, SGGLLU'I 1.L.J, allcl 
the first stage of the reaction, the lattice is separated into homogeneous domains. The 
interfaces of these regions are random to the extent of irregularity of the initial 
distribution, so empty places, i.e. gaps without particles A or B, are not excluded, in 
principle. In the deterministic approximation, each cell, however, contains a large 
number of particles either of A or B kind, so the splits are forbidden. To understand 
what happens on the lattice when the kinetics (15) turns on, the motion of B particles 
should be considered. The ( 1 . 3 6 ~ )  transitions for which jumps in the A regions are 
forbidden, apparently, do not mix the two types of particles in cells. Recombination 
channels ( 1 . 3 6 ~ )  and (1.368) cannot do this, since the resulting rate for nbi  in (12) is 
always negative, In what follows, in cell i the B particles never appear if they were 
initially absent there. Thus the unified action of diffusion and recombination channels 
conserves initial contours of particle distribution, with the redistribution of the con- 
centration profile proceeding within domains. This picture may he visualized as follows: 
if the particles were coloured, all parts would be pale but not deform with time. 

To make the statement of motionless of interfaces more precise, it is useful to 
rewrite the balance equation for nbj having in view equations (13) and (IS)  

I.-*:-.--r .->..-.I: --.-. L ----.. I.. - C . . - L - -  r *  c 

= - 2 D b n b i  + Db8. j  1 %i+. - D & i  1 % i t e .  (16) 

Here z is the coordination number of the lattice. Use was also made of the identities 

nbie(n.J = O  (17a) 

e(n . , , )+B(nbi )=  1 s(na:) = e ( n b i )  (176) 
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where e ( n , )  (=O, 1) are the Boolean variables. They represent that the cell j either 
contains A particles or is occupied by B only. 

The distribution of A particles follows by symmetry. The evolution of ‘local 
hybridization’ q; = fl.jflbi is determined with the two kinetics equations 
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a,q,=-z(D.tDb)rli-D.n.;eb,x n a i + e - D b f l b i 6 a c x  % i t .  (18) 

where the identity n,,8(n,,) = O  has been used. Initially, at f = +0, the configurations 
of A and B are non-intersecting, i.e. 9; = 0, n.,O(nb,) = nb,f3(n.,) = 0. It follows that for 
each ith cell a,q,(t = +0) = 0, and at time step dt  later the configurations remain 
non-intersecting. Since (18) is of first order in time, then repeating iterates give qj( t) = 0 
at following instants of time. Agreement of the result obtained with the conclusions 
of adiabatic analysis (see section 1.2.1) shows that (16) reflects the natural properties 
of DLR kinetics. 

However, the condition q t ( t )  = O  does not mean that the interfaces are motionless, 
since a situation when one of the phases displaces another one also satisfies it. For 
the DLR, such a situation, nevertheless, is excluded. In order to displace a piece of 
interface, the cells at one side of the boundary have to become depleted with n,; =O. 
In this case, fast particles jump into the hole resulting in replacement of one sort of 
molecule by another. The deterministic character of kinetics, however, is violated at 
earlier stages, and a fluctuation mechanism of redistribution of particles becomes more 
important. 

Thus we arrive at the following scenario of the DLR. After the first instants of the 
recombination, the excess component (for instance of U )  with density n,( >> 1 remains 
the only component in the ith cell. Cell clusters form homogeneous zones. The diffusion 
followed by mutual annihilation at interfaces cannot change positions of interfaces as 
time goes on. This law of conservation of topology may he termed the ‘chemical arrest 
effect’ 

e, = e ( n , , ( t ) ) =  e ( n , m .  (19) 

Within the framework of deterministic kinetics, S ( n m j )  = e(n, , )  where (I and p are 
adjacent phases, i.e. gaps between zones are forbidden. 

Formally, the time conservation of the ‘colour’ of each cell can be shown if we use 
equations (16) and (17) 

a?%; = Db (ehinhi+,-nbi)-D.eb,An.i. (20) 

In view of the identity nbi = Bbinbi, this equation is rewritten finally in terms of gradients 
of flows as a mass balance equation 

a,nbj = e(nb,)AN, where N, = Dbnbi - Danaj. 

The kinetics equation for the A species is obtained by permuting indices a and b 

d,n., = -O(noj)AN;. (2lb) 

This is the mass action equation for the density number for instantaneous recomhina- 
tion. As n,,+O, some smooth approximation of the function e(n , { )  tends to zero and 
makes density positively defined. However, by the time this nonlinear stage is reached, 
the deterministic kinetics breaks, leaving the stochastic one. 
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From equations (21) follows conservation of the total surplus of particles, i.e. 
zt[floj(f)- f ld t ) ]  =constant ( t ) ,  and the kinetics equation [2] for local surpluses Of 
particles, zj = n.; - nbi, in the case of equal diffusion coefficients is 

d,z, = DAz,. (22) 
Due to (19), the static parameters Od are determined by  initial preparation and are 

responsible for the contours of the interfaces. From equations (21), it follows that in 
cells with e,, = 0 the U particles are always absent, therefore these equations correctly 
account for the effect of memory of the initial stratified state. 

Linearity in equations (21) may be associated with the assumption that in the course 
of the analytical calculations displacement of an elementary amount of mass, E, is 
taken into account, as if a statistical analogue of the linear stability analysis of kinetic 
schemes were carried out. In fact, this condition does not suffice for linearity. Derivation 
of the kinetics equation (3) with finite U also uses small E but, due to interactions of 
particles within cells, results in nonlinear equations. Hence, the linearity suggests the 
importance of stratification formed under criterion (1). Due to fast recombination, 
domains are formed from the very beginning of the reaction, and the kinetics inside 
each of them is governed by linear transfer of particles in accordance with the values 
of the coefficients e,,, i.e. with information about neighbouring cells. The message of 
this consideration is that the kinetics under conditions (1) and (2) is of one-body 
character. 

2.4. Analogy with unimolecular absorption 

Kinetics of unimolecular absorption of moving B particles by motionless A traps 
involves two elementary diffusion transitions 

4 
I b ) l O ) A  IW) IW)- IWQ) 

which determine the Liouvillean of the problem expressed in terms of the correlation 
operators 

L.rr= 1 ( ( b T + ~ - b T ) b ~ s ( ~ ~ ; + ~ ) + ( l  -bT)bi@(fL+e)). 
i,e 

It corresponds to the following kinetics equation for PDF 

J A I n v i } ,  1 )  

=&1{(nhi+l )F(  ..., n b ; + l , . . . ;  t ) -nh;F(  ..., nbi . . . _  ; f))O(naj+-) 
;.e 

+Db 1 {(not+ l)F(. . . , f l o ; + . - l , .  . . , flhi f 1 , .  . . ; 1 )  
;,e 

-f lb;F(.  . ., %;+e , .  . . , f l h i , ,  , . ; 1 ) ) 8 ( f l o , + e ) .  

Derivation of a deterministic equation is performed with the help ofthe Kramers-Moyal 
expansion keeping only the linear terms in powers of E supplemented with the identities 
(17) 

a,nbi = Dosai nhi+r - zDhnhi = DbO(nh,)Anhi. (23) 

This equation describes the motion of B particles in the medium with A traps [17]. 
Solution of (23) satisfies the requirement that configurations for the two types of 



5304 

particles do not intersect. If the traps are initially present in the cell i, i.e. ne; a 1, 
S ( n . ; ) = O ,  O(nb;(+O))=O, then B particles do not appear there. The traps of A may 
be also interpreted as sinks of B particles giving the familiar model of unimolecular 
kinetics [17, 181 

(24) 

where Vat= VO(n.,) is the static 'potential' caused by the A component; Vaj = m  in 
cells occupied by the A traps and Vai = 0 in free cells. Equivalence of both formulations 
of unimolecular recombination follows from a coincidence of spatial-temporal sol- 
utions determined by equations (23)  and (24). Indeed, in regions occupied by the A 
traps, the 'potential' V>> D b  and the kinetics is chiefly governed by absorption. Particles 
of the B kind rapidly disappear in these regions with characteristic times of the order 
of V-' resulting in flows of B particles down their density gradients. 

A glance at (21)  shows that it can be transformed into an expression with sink 
terms just like (23)  has. Then, the system of kinetics equations written in matrix notation 
with symmetric operator in space representation 
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a,nbj = DbAnbi - Vain,, 

a,nj=(  D" -Db Db )An,-("' O )n; 
-D" 0 Vd 

where n = col(n.;, nbi),  describes diffusion of the A(B) component in the absorbing 
medium B(A).  The static potential Vri = VO(n,), where V + m ,  plays the role of the 
potential of a substitutional alloy, with coefficients O(n,) coupled by relations (17). 
Analysing the motion of A particles, we can conclude that in B regions the particles 
experience instantaneous absorption, and outside B regions they freely diffuse. Hence, 
only the term D"An., contributes to the equation for A particles inside A regions, 
while the second term, -DbAnbi, is important at the interfaces. 

An interesting feature of (25)  is that it can be obtained from variational principles 
(VP) by minimization of the Liapunov functional, with density of the 'kinetic part' 
being +(VN,)*, where N, is defined in (21a) ,  and the density of the 'potential part' 
being ( Va&+ Vajn&). Existence of VP was not evident from the very beginning, since, 
owing to the non-Hermitian form of Lew, it is absent both for the problem with finite 
U, i.e. for (1.3), and in the many-body formulation with U-00. 

Thus, the bimolecular reaction can be decomposed into two independent uni- 
molecular ones. Change of density at interfaces is caused by two simultaneous and 
independent processes: by jumps of A to B and by jumps of B to A. In this form, the 
bimolecular character of the reaction reveals itself as a process in which the two types 
of particles are equally participating. It will be shown in section 3 that the case with 
strongly differing D, corresponds to unimolecular kinetics (when one component is 
practically fixed), and the case with comparable coefficients is associated with 
bimolecular kinetics. 

3. Averaging over the initial density fluctuations 

3.1. Effective kinetics of redisfribution of densify 

In this section time dependence of the average density ( n A  and variance ((Sn,,)*) are 
evaluated assuming the initial distribution of configurations to be random. 



Adiabatic kinetics in diffusion-limited recombination: I1 5305 

First, the closed equation for the kinetics of A particles can be found from linear 

n d t )  = e (n , )p , , ( t )  (26) 

where e(%) is the static field. Making the Laplace transform over time in every 
equation of the system and substituting the formal solution to (21a), i.e. 

system (21). We seek a solution of the form 

r j b i = ( O - B b i D h L \ ) - ' n O b i - B b i D ~ A ~ ~ j  

in (Zlb) ,  we get immediately the equation for poi 

-A($&) P".- (Db/O)A(ebiPObi) (27) 

where ( I~=D,,~, ,+D~O~, and py=p:i+pObi are random fields, p"=pri(t=O), with 
Laplacian, A, on a lattice acts according to the rule: A + ; = &  ( $ j + e - + c )  for any 
function 4i. 

Equation (27) contains two independent fields. Configuration e,,, determines con- 
tours of domains, and distribution & determines initial density profile within the 
domains. We see that Brownian A particles are moving in two-component medium 

,nc ,,el0 , I;, g1vcs Lllci Lllllld, CULIUIII"II) 

evolution of which should he determined. Although motion of A particles proceeds 
in the A phase, the formal structure of (27), after elimination of B phase, is such as 
if the A particle moved from time to time in the B phase with diffusion coefficient Db. 

Denote an effective Brownian particle obeying (27) as A*. Two situations may be 
distinguished: Db = 0 and Db # 0. Imagine a bounded A region within a larger B region. 
In the first case, when Db = 0, those B cells which do not border the interface do not 
'feel' the changing A profile, For this reason, every compact region of A is isolated 
from all other A regions, so destruction of particles within interfaces occurs indepen- 
dently of neighbouring regions (figure 1). It is known [I91 that when the volume 
fraction of ill-conducting B regions exceeds a critical value, a:, localization of A* 
takes place within conducting domains, the particles of A* being destroyed at interfaces 
through unimoiecuiar reaction [ioj. Aiihough for smaiier fraciioiis f ib,  f ib  s f i5 ,  an 
effective diffusion on the whole lattice occurs, the asymptotic kinetics remains the 
same, i.e. the unimolecular one [20], and it is limited by motions in the bounded A 
regions [211. 

w,In ,,ererug~r,cuus Lla"s,,,u,, ,a~cs +j, -- C . . A  l r l l  
.I.- : - : . : - 8  ---a:*:-- ... :... I ...---.--. ~. .  ..._ ^ II.._ --.-- 

I 

Stotlonory Coordrnote 
interforer 

Figure 1. The occupation numbers distribution of mixture on a lattice in the DLR process. 
On the deterministic stage, each cell represents a well-stirred reservoir with a large number 
of particles. In particular, at motionless interfaces. occupation numbers are not equal to 
zefo. For D, =0, numbers of A particles in different A domains decrease independently. 
All regions a n  interconnected for Do, D, # 0. 
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In the second case when the coefficients are comparable, Db # 0, perturbations of 
density occumng in some A region transfer through the moving B medium to the 
neighbourhood A regions, and in turn, the next B, and so on. As a result of such 
large-scale diffusive actions, all A regions which are far from one another and are 
separated by B domains, are involved in full kinetics. Destruction of particles obeys, 
in this case. laws different to those for fixed B. 

3.2. Averaging for Db # 0 

It is hopeless to expect an explicit solution to (27) because of non-uniform field Ilri. 
An approximation we are going to use is that the rate of density relaxation within 
some U domain is mainly determined by intrinsic rate D,, 

Fa( ‘ [ W  - D.A]-’pO,j - [ O  -DbA]-’(Db/O)A(ebiPobi). (28) 
The idea we use to simplify the problem is based on the fact that for equal diffusion 
coefficients, D = D. = Db, motion of particles occurs in uniform and inert medium 
with $+ = D. Hence, a transition from (27) to (28) is carried out exactly. In this case, 
fields prj play the same role in the DLR kinetics as the field zj in the kinetics with finite 
rate U [2]. According to (26), calculation of A particle numbers requires ‘cutting out’ 
regions with A phase from the field poi. The remaining profile pai does not contribute 
to the calculation of nat, since the B phase has its own equation for pbi which is 
analogous to (27). As a result, the total number of particles of the sort U determined 
by (26) changes in time, although the value pr;, being integrated over the whole lattice, 
is conserved. 

Thus, choosing (28) as an approximate solution to (27), the problem is reduced to 
averaging of the right-hand side in (28). It should be noticed that although coefficients 
OCi are presented both in function and in Y;, we suppose that the function Y(O,{) 
is more important for the kinetics than $(O-!). 

The Green function (OF) for a diffusive motion on a homogeneous three-dimensional 
lattice has the form [17]: 

3 

“ = I  
@“’ ( t )  = n {exp(-2D,f)I,.(2Dd)} (29) 

where 1,- is the modified Bessel function of order r, ,  and r =  { r , ,  rlr r3} is the displace- 
ment vector. In the coordinate representation, pOi(f) in (28) is given by 

where p:( = O,m,j. When deriving (30) the identity 

[ o - D b A ] - ’ ( D b / ~ ) A = [ o - D b A ] - l - o - l  

was used. For random numbers p:x, the value pax(f) is also random. The fields 
mVj are supposed to be statistically independent, with correlation functions 

and 

where i # j 
(31) 

Here the following notation is introduced: n, is the part of the volume occupied by 
U component so that 1 =a,, +a,, p- is average number density of U particles in some 

(evj) = n, (e.,ebj)= ( e , m b j )  
2 2 

= no (mrO = P- (m,J=p,+x, .  
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cell, and x, measures fluctuations in number density (for the Gaussian model x, = p,). 
For these conditions, averaging yields 

(noj( t ) )=na{ka + n b ( P a % r ’ ( f ) +  pb%bb’(t))) (32) 

where k, = ( p a n ,  -Pbnb) is a constant. Actually, we have calculated the average density 
of A particles, ( c a ( f ) ) ,  weighted by the fraction a. of the volume of A species, i.e. 
( n , ( f ) ) = n . ( c , ( i ) ) .  Intheabsenceof B phase whennb=O,i l .= l ,wehave(n , ( f ) )=  
pa. When r = O  and i = 0 ,  the lattice GF equals unity, @oo$,”’(0)= I ,  so (n,(O))=p.n,. 
At large times, GF %g’(f) decreases at f-’l2, and if k. <O, then after some time the 
density ( n , ( f ) )  becomes negative. This result is not surprising since at low concentra- 
tions of the particles in cells the deterministic kinetics breaks, leaving a stochastic one. 
In the case k.<O, the density of 8, ( e b j ( [ ) ) ,  bas positive cofficient kb= 
nb(pbll-p.n.)= -k.>O, i.e. B particles are in excess and the condition of deter- 
ministic approximation (2) is approximately applicable for them. Forthe d-dimensional 
case, the same procedure yields (noj( I ) )  = f - d i 2  for f+m.  

To calculate the number fluctuations, we should first find the second moment 

(nZj(t)) =E x {%~:“!%j~:(e,n”.n”,)+ %j!L$;:”:(e,~”bn:y) 
I Y  

-2%~~!$j”(e ,n~n~~)} .  (33) 

The result may be expressed in the form ( n i j ( i ) )  = n . ( c : ( t ) )  that is merely a definition 
for (cZ(i)) .  Using correlation functions (31), we determine the expressions for correla- 
tions (O,n:,ni,), where a, p = a ,  b, depending on whether the cells x and y coincide 
with each other and with the cell j .  After summation, we find that the variance 
((Sc,)’) = ( C $ - ( C ~ ~ ) ~  equals explicitly 

( ( S C ~ ~ ) ’ )  = ab[x.( %PI)’ -xa (  9bb’)’] + [ G‘“’x,~, + G ‘ b ’ ~ & b ]  -Cl,fib(p,%~’+ 

+ n.Clb(p: G‘“’ + p: G‘b’ + 2p,pb 1 %p’%(b’ r .  (34) 
r 

Here the function 

G‘“’( i )  = {%?I( 
x 

is linked with  for returning random walk due to the Chapmen-Kolmogorov equation 
[lo, 121, i.e. G‘“’( i )=%g’(2f ) .  Using expression for OF, (29). and the theorem of 
summation of Bessel functions [22], the sum 

%p’%y= $;’(2f) 
x 

is related to GF with diffusion coefficient D, =;(D. + 4). At time f = 0, (34) gives 
((Sc,)’)=x. that is in agreement with (31). Asymptotic behaviour of ( ( S C , ) ~ )  is 
determined by asymptotes of the functions %g’(Zf) and %:’(2f) that decrease as i-’I2 
for f +CO. This gives time dependence of the standard deviation in the density 

((Scvi)2)l/2= f-’/4. 

We see so that not only (( cej)2)’/2 decreases as i-3i4, but also the typical local fluctuations 
in number density, ( ( S C ~ ~ ) ’ ) ’ / ~ ,  do the same. For the d-dimensional case, ( ( S C , ) ~ ) ~ / ~ =  
i-d’4 for f - m. 
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Contributions of higher moments to the asymptotic behaviour of { ( c & ) ) ’ / *  that are 
certainly to be proportional to  

{ m 4 ’ I k  x = 1 - ”  where u=3(k-1)/2k 

are small compared to the k = Z term 

4. Summary and discussion 

Although computer simulations [3] revealing slowing of DLR kinetics are quoted as 
confirming the theory [21, in fact, they concern a different physical situation. Using 
statistical simulations, one has to deal with dilute gas particles for which temporary 
fluctuations in density are essential. In contrast, the analytical results [2] concern a 
high density stage with small fluctuations. To understand the numerical simulations, 
analysis of temporary fluctuations on stochastic stage, when (n-J c 1 and large domains 
survive, is required. At the deterministic level, it is hardly possible to confirm the 
numerical results with the desired accuracy or to make any conclusions about the 
asymptotic behaviour. 

The stochastic equation is more difficult to derive as it involves motion of randomly 
distributed interfaces. The authors [Z] attributed the decrease of (Iz;(f)l) (the value is 
expressed through even moments of zj = nni - nbi) to decrease of the average density 
(nrj) ,  assuming that (n$) = (nvj)2, which implies that =O. Meanwhile, if the 
solution of the kinetics equations (21) is used, the first and the second moments are 
determined independently, and has been shown (see equations (32) and (34)), that 
while criteria ( I )  and (2) are fulfilled (adiabaticity +determinism), the formula f-”* 
describes the standard deviation, while the average density decreases faster, 
as fC312, with relation ( C ~ ~ ) = ( ( ~ C , ~ ) ~ ) + ( C ~ ~ ) ~  holding. In general, for dimension d, it 
can be obtained that ( ( 8 ~ - < ) ~ ) ” ~ =  fCd14 and (c,J = f C d / * .  The result contradicts that of 
[Z] and the common point of view [5-9]. So, the question is relevant here: why does 
the intermediate asymptote of (~2;)”~ (on transient deterministic stage) correspond to 
caicuiations of (Cmij  in exactiy the asymptotic stage [3j? 

Consider now the recombination operator in a two-species system. It has been 
shown in I that bosonization technique, applied to operator R L ,  that is expressed 
originally in terms of Hubbard operators, gives correlation operators O(&) and 8(&;). 
The trigger role of this operator consists in choosing the way of changing the current 
state. It may go along either a diffusive Gump) or recombinative Gump+annihilation) 
pathway. Equation of deterministic kineiics corresponding io  ihis form of ierr is sirongiy 
nonlinear due to functions O(n , ; ) .  The latter are responsible for the positions of 
interfaces. For nrf > 1, these functions hold in time. Because of this, in the deterministic 
picture, the particles of each kind are confined to regions with fixed interfaces deter- 
mined by initial preparation of  the system (‘chemical arrest effect’) and recombine at 
interfaces. The kinetics of redistribution of particles within interfaces is linear and 
formuiaied in ierms of density of every componerii, iioi iiiereiji iii terms of 
density as in [Z]. 

The motion of interfaces occurs when the deterministic character of recombination 
breaks down. 

The possibility to linearize the nonlinear DLR problem is an important property of 
the Bose models with fast recombination. We hope that this property, that is valid 
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exclusively in the deterministic approximation, may be used to investigate effective 
transport-limited reaction by reducing the piecewise-linear problem for random 
heterogeneous medium to a globally linear one in the spirit of the effective medium 
theory. 
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